Balance-of-Payments Crises and HOUSEHOLD HETEROGENEITY

SMALL OPEN ECONOMY WITH HAND-TO-MOUTH AGENTS (TANK)

Gergő Motyovszki

EUI

Florence, 29 Apr 2019

- 2 Modei
 - O SOE-TANK
 - Open economy New Keynesian Cross
- 3 Results
 - Sudden stops and the HtM channe
 - Sensitivity analysis
- 4 CONCLUSION

MOTIVATION

INTRODUCTION •OOOO

- higher volatility relative to advanced economies
 - $\quad \hbox{in terms of GDP } [\mathit{var}(Y)]... \\$
 - ...and consumption [var(C)/var(Y)]

MOTIVATION

- higher volatility relative to advanced economies
 - in terms of GDP [var(Y)]...
 - ...and consumption [var(C)/var(Y)]
- onot fully integrated into global financial markets
 - imperfect international risk sharing even for financially included households
 - prone to "sudden stops" of capital inflows (balance-of-payments crises)

MOTIVATION

INTRODUCTION •0000

- higher volatility relative to advanced economies
 - in terms of GDP [var(Y)]...
 - ...and consumption [var(C)/var(Y)]
- not fully integrated into global financial markets
 - imperfect international risk sharing even for financially included households
 - prone to "sudden stops" of capital inflows (balance-of-payments crises)
- low financial market participation of households: large fraction of "hand-to-mouth" agents
 - impaired ability to smooth consumption
 - widely explored in the closed economy context, but not so much with open economies
 - in advanced economies it is not even that relevant as in EMEs (low HtM share)

- higher volatility relative to advanced economies
 - in terms of GDP [var(Y)]...
 - ...and consumption [var(C)/var(Y)]
- not fully integrated into global financial markets
 - imperfect international risk sharing even for financially included households
 - prone to "sudden stops" of capital inflows (balance-of-payments crises)
- low financial market participation of households: large fraction of "hand-to-mouth" agents
 - impaired ability to smooth consumption
 - widely explored in the closed economy context, but not so much with open economies
 - in advanced economies it is not even that relevant as in EMEs (low HtM share)
 - ⇒ Could the HtM-channel can explain (some) of this high volatiliy?
 - ⇒ How does it work in BoP crises?
 - ⇒ How does it interact with monetary policy?

Overview

- New Keynesian Cross mechanism [Bilbiie, 2017]
 - direct effects of shocks on aggregate demand (e.g. of interest rate changes through intertemporal substitution, Euler-eq.)
 - indirect GE effects on consumption through income can lead to multiplication only with HtM households
 - HtM consume out of current income (high MPC), unlike consumption-smoothing optimizers who consume out of lifetime income

- New Keynesian Cross mechanism [Bilbiie, 2017]
 - direct effects of shocks on aggregate demand (e.g. of interest rate changes through intertemporal substitution, Euler-eq.)
 - indirect GE effects on consumption through income can lead to multiplication only with HtM households
 - HtM consume out of current income (high MPC), unlike consumption-smoothing optimizers who consume out of lifetime income
- build a small open economy (SOE), two agent New Keynesian (TANK) model

OVERVIEW

- New Keynesian Cross mechanism [Bilbiie, 2017]
 - direct effects of shocks on aggregate demand (e.g. of interest rate changes through intertemporal substitution, Euler-eq.)
 - indirect GE effects on consumption through income can lead to multiplication only with HtM households
 - HtM consume out of current income (high MPC), unlike consumption-smoothing optimizers who consume out of lifetime income
- build a small open economy (SOE), two agent New Keynesian (TANK) model
- look at a sudden stop (incomplete markets)
 - A) real interest rates rise: $r \uparrow \Rightarrow$ depresses consumption (as in RANK)
 - B) real depreciation: $Q \uparrow \Rightarrow \text{boosts net external demand}$
 - A vs B determines recession or expansion, and how the HtM-channel through the indirect effect operates (only in TANK)

OVERVIEW

INTRODUCTION 00000

- New Kevnesian Cross mechanism [Bilbije, 2017]
 - direct effects of shocks on aggregate demand (e.g. of interest rate changes through intertemporal substitution, Euler-eq.)
 - indirect GE effects on consumption through income can lead to multiplication only with HtM households
 - HtM consume out of current income (high MPC), unlike consumption-smoothing optimizers who consume out of lifetime income
- build a small open economy (SOE), two agent New Keynesian (TANK) model
- look at a sudden stop (incomplete markets)
 - A) real interest rates rise: $r \uparrow \Rightarrow$ depresses consumption (as in RANK)
 - B) real depreciation: $Q \uparrow \Rightarrow \text{boosts net external demand}$
 - A vs B determines recession or expansion, and how the HtM-channel through the indirect effect operates (only in TANK)
- monetary policy and currency regime can matter a lot [Krugman, 2014]
 - with nominal rigidities it affects how the shock is distributed across $r \uparrow$ and $Q \uparrow$

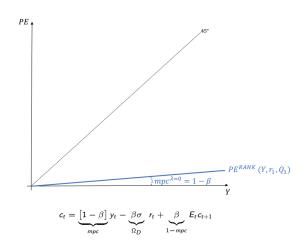
Introduction 00000

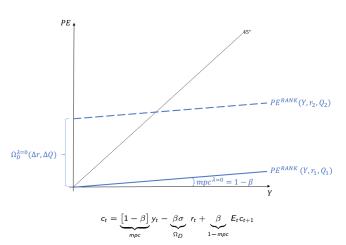
> 1 sudden stop is contractionary under FX-peg, but expansionary under free float (in RANK as well as TANK)

INTRODUCTION

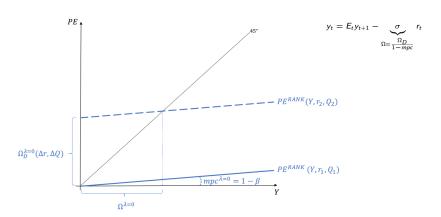
- sudden stop is contractionary under FX-peg, but expansionary under free float (in RANK as well as TANK)
- ② the HtM-channel (in TANK) amplifies the responses of output under both currency regimes (relative to RANK)

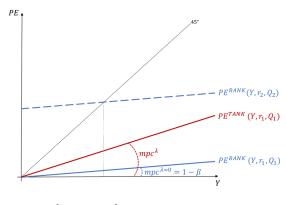
- sudden stop is contractionary under FX-peg, but expansionary under free float (in RANK as well as TANK)
- 2 the HtM-channel (in TANK) amplifies the responses of output under both currency regimes (relative to RANK)
- under free float the HtM-channel mitigates the fall in aggregate consumption (since incomes increase)
 - Ricardian and HtM consumption goes in opposite direction (instead of reinforcing, direct and indirect effects work against each other)
 - with high HtM share and nominal rigidities, HtM-channel can dominate the downward pressure from intertemporal substitution: aggregate consumption <u>rises</u> (only in TANK!)

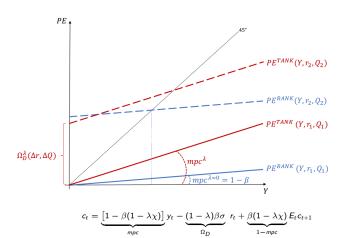

INTRODUCTION 00000


- 1 sudden stop is contractionary under FX-peg, but expansionary under free float (in RANK as well as TANK)
- (2) the HtM-channel (in TANK) amplifies the responses of output under both currency regimes (relative to RANK)
- under free float the HtM-channel mitigates the fall in aggregate consumption (since incomes increase)
 - Ricardian and HtM consumption goes in opposite direction (instead of reinforcing, direct and indirect effects work against each other)
 - with high HtM share and nominal rigidities, HtM-channel can dominate the downward pressure from intertemporal substitution: aggregate consumption rises (only in TANK!)
- under FX-peg the HtM-channel amplifies the fall in aggregate consumption (since incomes also fall)

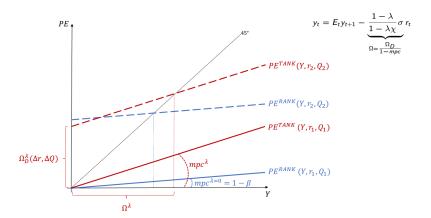
INTRODUCTION 00000

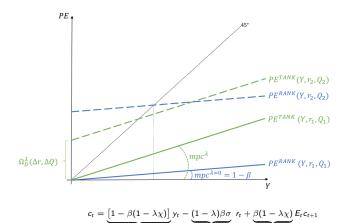

- 1 sudden stop is contractionary under FX-peg, but expansionary under free float (in RANK as well as TANK)
- (2) the HtM-channel (in TANK) amplifies the responses of output under both currency regimes (relative to RANK)
- under free float the HtM-channel mitigates the fall in aggregate consumption (since incomes increase)
 - Ricardian and HtM consumption goes in opposite direction (instead of reinforcing, direct and indirect effects work against each other)
 - with high HtM share and nominal rigidities, HtM-channel can dominate the downward pressure from intertemporal substitution: aggregate consumption rises (only in TANK!)
- under FX-peg the HtM-channel amplifies the fall in aggregate consumption (since incomes also fall)
- ⇒ Accounting for the HtM-channel, a FX-peg is even more detrimental relative to a free float during BoP crises.





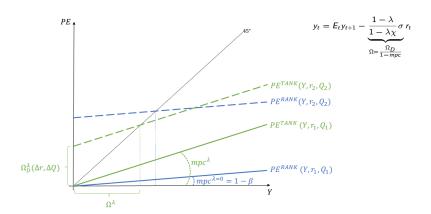
Gergő Motyovszki SOE TANK





 $c_t = \left[1 - \beta(1 - \lambda \chi)\right] y_t - \underbrace{(1 - \lambda)\beta\sigma}_{} r_t + \underbrace{\beta(1 - \lambda \chi)}_{} E_t c_{t+1}$

GERGŐ MOTYOVSZKI



mpc

Gergő Motyovszki SOE TANK

Introduction 00000

1 - mpc

LITERATURE

- emerging market financial crises
 - financial frictions on firm investment (collateral constraints, balance sheet effects, currency mismatch) [Mendoza, 2002], [Mendoza, 2010], [Aghion et al., 2001], [Céspedes et al., 2004]
 - reduced form risk premium [Benczúr and Kónya, 2015]
- open economy New Keynesian models (RANK)
 - complete markets [Galí and Monacelli, 2005]
 - incomplete markets [De Paoli, 2009]
- heterogeneous agents (mainly closed economy)
 - hand-to-mouth agents (TANK): [Bilbiie, 2017]
 - uninsured idiosyncratic risk (HANK): [Kaplan et al., 2018]. [Debortoli and Galí, 2018], [Bilbiie, 2018]

[lyer, 2017] and [Boerma, 2014] consider an open economy TANK model, but with perfect international risk sharing \Rightarrow not suitable for sudden stops

$$\underbrace{c_{t} = E_{t}c_{t+1} - \sigma r_{t}}_{\text{RANK}} - \underbrace{\frac{\lambda(\chi - 1)}{1 - \lambda\chi} \sigma r_{t}}_{\text{TANK: htm.-channel (cyclical inequality)}} + \underbrace{(\delta - 1)E_{t}c_{t+1}}_{\text{HANK: acycl. idiosyncr. risk}} + \underbrace{(\theta - 1)\left(\delta E_{t}c_{t+1} - \sigma \frac{1 - \lambda}{1 - \lambda\chi} r_{t}\right)}_{\text{HANK: cyclical risk}}$$

TANK: HtM-channel (cyclical inequality)

4 D > 4 A > 4 E > 4 E > E E 9 Q P

- 2 Model
 - SOE-TANK
 - Open economy New Keynesian Cross
- 3 Results
 - Sudden stops and the HtM channel
 - Sensitivity analysis
- 4 Conclusion

Model ingredients

- lacktriangle small open economy (SOE) \Rightarrow real exchange rate matters for aggregate demand
- ullet two agents (TA): Ricardian and Hand-to-Mouth households \Rightarrow AD-amplification through New Keynesian Cross (high aggregate MPC)
- nominal rigidities (NK) ⇒ monetary policy and currency regimes matter
- incomplete international financial markets: Ricardians trade in a single bond
 - no idiosyncratic risk (avoiding a full-blown HANK)
 - LCY debt or FX debt (currency mismatch)
 - debt-elastic risk-premium (ensuring stationarity)
 - balance-of-payments matters (sudden stop) as opposed to perfect risk-sharing
- sudden stop as a shift in foreigner's asset supply (the premium function)
- balanced budget fiscal policy (for now)
 - potentially redistributing profits
 - no government expenditures
 - no government debt

HAND-TO-MOUTH HOUSEHOLDS

 λ fraction of households don't participate in financial markets:

$$\max_{\begin{subarray}{c} \begin{subarray}{c} \$$

$$P_t\ \check{C}_t = W_t\ \check{N}_t + P_t \check{T}_t$$

• HtM labor supply:

$$w_t \equiv \frac{W_t}{P_t} = \check{C}_t^{\sigma} \check{N}_t^{\varphi}$$

RICARDIAN HOUSEHOLDS

 $1-\lambda$ fraction of households can trade in a risk-free international bond (LCY or FCY):

$$\begin{split} \max_{\widehat{C}_t, \widehat{N}_t, \widehat{B}_t, \widehat{B}_t^*} \quad E_t \sum_{t=0}^{\infty} \beta^t \left\{ \frac{\widehat{C}_t^{1-\sigma}}{1-\sigma} - \frac{\widehat{N}_t^{1+\varphi}}{1+\varphi} \right\} \\ P_t \ \widehat{C}_t + \frac{\widehat{B}_t}{1+i_t} + \frac{e_t \ \widehat{B}_t^*}{(1+i_t^*)\psi_t} \leq \widehat{B}_{t-1} + e_t \ \widehat{B}_{t-1}^* + W_t \ \widehat{N}_t + \frac{(1-\tau^D)P_t \Upsilon_t}{1-\lambda} \end{split}$$

FOCs:

$$\begin{aligned} w_t &= \frac{W_t}{P_t} = \widehat{C}_t^{\sigma} \ \widehat{N}_t^{\varphi} \\ &\frac{1}{1+i_t} = \beta \ E_t \left\{ \left[\frac{\widehat{C}_{t+1}}{\widehat{C}_t} \right]^{-\sigma} \frac{1}{\Pi_{t+1}} \right\} \\ &\frac{1+i_t}{E_t \Pi_{t+1}} = \frac{1+i_t^*}{E_t \Pi_{t+1}^*} \ \psi_t \ \frac{E_t \ Q_{t+1}}{Q_t} \end{aligned}$$

←□▶ ←□▶ ← □▶ ← □▶ ←□▶ ←□▶

SOE-TANK

International risk sharing

■ incomplete markets ⇒ imperfect risk sharing

$$\left[\frac{\operatorname{E_t}\widehat{C}_{t+1}}{\widehat{C}_t}\right]^{\sigma} = \left[\frac{\operatorname{E_t}C_{t+1}^*}{C_t^*}\right]^{\sigma} \psi_t \frac{\operatorname{E_t}Q_{t+1}}{Q_t}$$

- less tight link between consumption and the real exchange rate than under perfect risk sharing $\widehat{C}_t = C_t^* Q_r^{\frac{1}{p'}}$
- ullet debt-elastic risk-premium ψ_t drives a further wedge (needed for stationarity, otherwise random walk, [Schmitt-Grohé and Uribe, 2003])
- market incompleteness is aggrevated by the presence of HtM ($\lambda \neq 0 \Rightarrow \widehat{C}_t \neq C_t$) who cannot participate in markets

Consumption baskets

- ullet lpha is a measure of openness (import intensity), 1-lpha is the home bias
- \bullet η elasticity of substitution between Home and Foreign produced (imported) goods

$$\begin{split} & \check{C}_t = \left[(1 - \alpha)^{\frac{1}{\eta}} (\check{C}_t^H)^{\frac{\eta - 1}{\eta}} + \alpha^{\frac{1}{\eta}} (\check{C}_t^F)^{\frac{\eta - 1}{\eta}} \right]^{\frac{\eta}{\eta - 1}} \\ & \widehat{C}_t = \left[(1 - \alpha)^{\frac{1}{\eta}} (\widehat{C}_t^H)^{\frac{\eta - 1}{\eta}} + \alpha^{\frac{1}{\eta}} (\widehat{C}_t^F)^{\frac{\eta - 1}{\eta}} \right]^{\frac{\eta}{\eta - 1}} \end{split}$$

Demand functions and CPI:

$$P_{t} = \left[(1 - \alpha)(P_{t}^{H})^{1 - \eta} + \alpha(P_{t}^{F})^{1 - \eta} \right]^{\frac{1}{1 - \eta}}$$

$$\check{C}_t^H = (1 - \alpha) \left[\frac{P_t^H}{P_t} \right]^{-\eta} \check{C}_t$$

$$\widehat{C}_t^H = (1 - \alpha) \left[\frac{P_t^H}{P_t} \right]^{-\eta} \widehat{C}_t$$

$$\check{C}_t^F = \alpha \left[\frac{P_t^F}{P_t} \right]^{-\eta} \check{C}_t$$

$$\widehat{C}_{t}^{F} = \alpha \left[\frac{P_{t}^{F}}{P_{t}} \right]^{-\eta} \widehat{C}_{t}$$

◆□ → ◆同 → ◆ 三 → 三 三 ◆ ○ ○ ○

SOE-TANK

Consumption baskets – 2

- lacktriangledown γ elasticity of substitution between imports from different countries $j \in [0,1]$

Demand functions for HtM (similarly for Ricardians \widehat{C}_t , and for Home j = H):

$$\begin{split} & \check{C}^F_t = \left[\int_0^1 (\check{C}^j_t)^{\frac{\gamma-1}{\gamma}} \; \mathrm{d}j \right]^{\frac{\gamma}{\gamma-1}} \\ & \check{C}^j_t = \left[\frac{P_{t,j}}{P^F_t} \right]^{-\gamma} \check{C}^F_t \\ & P^F_t = \left[\int_0^1 P^{1-\gamma}_{t,j} \; \mathrm{d}j \right]^{\frac{1}{1-\gamma}} \end{split}$$

$$\begin{split} \check{C}_t^j &= \left[\int_0^1 \check{C}_t^j(i)^{\frac{\varepsilon-1}{\varepsilon}} \; \mathrm{d}i \right]^{\frac{\varepsilon}{\varepsilon-1}} \\ \check{C}_t^j(i) &= \left[\frac{P_{t,j}(i)}{P_{t,j}} \right]^{-\varepsilon} \check{C}_t^j \\ e_{t,j}P_t^j &= P_{t,j} &= \left[\int_0^1 P_{t,j}(i)^{1-\varepsilon} \; \mathrm{d}i \right]^{\frac{1}{1-\varepsilon}} \\ P_t^H &= \left[\int_0^1 P_t^H(i)^{1-\varepsilon} \; \mathrm{d}i \right]^{\frac{1}{1-\varepsilon}} \end{split}$$

EXCHANGE RATES

- \bullet *effective* nominal exchange rate is defined as $\textbf{e}_t = \left[\int_0^1 \textbf{e}_{t,j}^{1-\gamma} \ \mathrm{d}j\right]^{\frac{1}{1-\gamma}}$
- ullet bilateral real exchange rate is $Q_{t,j}=rac{e_{t,j}P_t^j}{P_t}$, while the effective real exchange rate is defined as $Q_t=\left[\int_0^1Q_{t,j}^{1-\gamma}\mathrm{d}j\right]^{\frac{1}{1-\gamma}}\Rightarrow Q_t=P_t^F/P_t$
- the Law of One Price holds for imports (but due to home bias, $\alpha \neq 1$, Purchasing Power Parity in terms of the CPI P_t does not apply):

$$P_t^F = e_t P_t^*$$

effective real exchange rate:

$$Q_t = \frac{e_t P_t^*}{P_t}$$

• CPI-PPI wedge due to openness ($\alpha \neq 0$)

$$\frac{P_t}{P_t^H} = \left[\frac{1 - \alpha}{1 - \alpha Q_t^{1 - \eta}} \right]^{\frac{1}{1 - \eta}} \equiv h(Q_t) \tag{1}$$

SOE-TANK

RETAILERS

Perfectly competitive Retailers bundle together differentiated intermediate goods into final goods

$$\begin{split} \max_{Y_t(i)} & \left\{ P_t^H Y_t - \int_0^1 P_t^H(i) Y_t(i) \; \mathrm{d}i \right\} \\ & Y_t = \left[Y_t(i) \frac{\varepsilon - 1}{\varepsilon} \, \mathrm{d}i \right]^{\frac{\varepsilon}{\varepsilon - 1}} \end{split}$$

Demand function:

$$Y_t(i) = \left[\frac{P_t^H(i)}{P_t^H}\right]^{-\varepsilon} Y_t$$

Intermediate good firms

- monopolistically competitive
- Calvo rigidities (θ) in Home produced good prices

$$\max_{P_t^H(i)} \sum_{k=0}^{\infty} \theta^k \underbrace{\frac{1}{\prod_{s=1}^{k} (1+i_{t+s})}}_{\equiv \Psi_{t,t+k}} \left[P_t^H(i) Y_{t+k}(i) - (1-\tau^w) W_{t+k} N_{t+k}(i) - P_{t+k} T_{t+k}^s \right]$$

$$Y_{t+k}(i) = \left[\frac{P_t^H(i)}{P_{t+k}^H}\right]^{-\varepsilon} Y_{t+k}$$
$$Y_t(i) = A_t N_t(i)$$

optimal price decision:

$$P_t^H(*) = \underbrace{\frac{\varepsilon(1 - \tau^w)}{\varepsilon - 1}}_{\text{E}} \text{ E}_t \; \frac{\sum_{k=0}^{\infty} \theta^k \Psi_{t,t+k} \; Y_{t+k}(i) \; MC_{t+k}(i)}{\sum_{k=0}^{\infty} \theta^k \Psi_{t,t+k} \; Y_{t+k}(i)}$$

4□ > 4回 > 4 = > 4 = > 至 = 9 < @</p>

AGGREGATE SUPPLY

aggregate production function

$$Y_t \equiv_t = A_t N_t$$

price dispersion

$$\Xi_t = \left(\Pi_t^H \right)^{\varepsilon} \theta \ \Xi_{t-1} + (1 - \theta) \left[\frac{1 - \theta \left(\Pi_t^H \right)^{\varepsilon - 1}}{1 - \theta} \right]^{\frac{\varepsilon}{\varepsilon - 1}}$$

lacktriangledown firm profits: wage subsidy is financed by lump sum tax T_t^s on firms!

$$\begin{split} \Upsilon_t &= \frac{P_t^H}{P_t} Y_t - (1 - \tau^w) w_t N_t - T_t^s = \\ &= \frac{Y_t}{h(Q_t)} - w_t N_t = \\ &= \frac{Y_t}{h(Q_t)} \left[1 - rMC_t \; \Xi_t \right] \end{split}$$

OPEN ECONOMY NEW KEYNESIAN CROSS

Market clearing and accounting

$$\begin{split} N_t &= \lambda \check{N}_t + (1 - \lambda) \widehat{N}_t \\ C_t &= \lambda \check{C}_t + (1 - \lambda) \widehat{C}_t \\ C_t^H &= \lambda \check{C}_t^H + (1 - \lambda) \widehat{C}_t^H \\ C_t^F &= \lambda \check{C}_t^F + (1 - \lambda) \widehat{C}_t^F \end{split}$$

Goods market clearing (Aggregate Demand):

$$\begin{aligned} Y_t &= C_t^H + C_{t,*}^H = \\ &= \underbrace{(1 - \alpha) \left[\frac{P_t^H}{P_t}\right]^{-\eta} C_t}_{C_t^H} + \underbrace{\alpha \int_0^1 \left[\frac{P_t^H}{e_{t,j} P_t^{F,j}}\right]^{-\gamma} \left[\frac{P_t^{F,j}}{P_t^j}\right]^{-\eta} C_{t,j} \, \mathrm{d}j}_{C_{t,*}^H} = \\ &= (1 - \alpha) \left[h(Q_t)\right]^{\eta} C_t + \alpha \left[h(Q_t)\right]^{\gamma} Q_t^{\gamma} Y_t^* \end{aligned}$$

- lacktriangle in a closed economy (lpha=0) this collapses to be the resource constraint
- with openness this is an important descriptor of the economy's AD side as a function of REER

◆ロト ◆部ト ◆重ト ◆重ト 重目 かくぐ

EXTERNAL BALANCE

Balance of payments

LCY debt:

$$P_t C_t + \frac{B_t}{1 + i_t} = B_{t-1} + W_t N_t + P_t \Upsilon_t$$

$$\frac{1}{P_t} \left[\frac{B_t}{1 + i_t} - B_{t-1} \right] = \underbrace{\frac{P_t^H}{P_t} Y_t - C_t}_{NX_t}$$

$$\frac{b_t}{1+i_t} - \frac{b_{t-1}}{\prod_t} = NX_t$$

FX debt:

$$P_{t}C_{t} + \frac{e_{t}B_{t}^{*}}{(1+i_{t}^{*})\psi_{t}} = e_{t}B_{t-1}^{*} + W_{t}N_{t} + P_{t}\Upsilon_{t}$$

$$\frac{e_t}{P_t} \left[\frac{B_t^*}{(1+i_t^*)\psi_t} - B_{t-1}^* \right] = \underbrace{\frac{P_t^H}{P_t} Y_t - C_t}_{NX_{\bullet}}$$

$$\frac{b_t^*}{(1+i_t^*)\psi_t} - b_{t-1}^* \frac{Q_t}{Q_{t-1}} = NX_t$$

- incomplete markets: NFA position b_{t-1} is an important state variable
- first-order valuation effects when $b \neq 0$ (monetary policy non-neutral with nominal LCY debt, even under flex prices)

◆ロト ◆部ト ◆注ト ◆注ト を注 りなべ

RISK PREMIUM

- lacktriangle domestic households face a debt-elastic risk premium ψ_t (= asset supply of foreigners)
- no idiosyncratic risk (= flat asset demand of domestic households), but no perfect risk sharing either (incomplete int'l markets)
 - without the risk premium ($\delta>0$) the model would not be stationary and the steady state NFA (= "asset distribution") would not be pinned down [Schmitt-Grohé and Uribe, 2003]
 - \bullet through debt-elastic ψ_t assets become an important state variable in the consumption-saving decision, anchoring the model
- ullet sudden stop as a shock to ζ_t
- ullet is a parameter pinning down steady state NFA

$$\begin{split} \psi_t &= e^{-\delta \left(\frac{B_t}{P_t^H Y_t} - \zeta_t\right)} = \\ &= e^{-\delta \left(b_t \frac{h(Q_t)}{Y_t} - \zeta_t\right)} \\ \zeta_t &= (1 - \rho_\zeta)\zeta + \rho_\zeta \zeta_{t-1} + \epsilon_t^\zeta \end{split}$$

GOVERNMENT POLICIES

Monetary policy:

$$\frac{1+i_t}{1+i} = \left(\frac{\Pi_t^H}{\Pi^H}\right)^{\phi^{\pi}} \left(\frac{Y_t}{\overline{Y}_t}\right)^{\phi^{\gamma}} \left(\frac{e_t}{e_{t-1}}\right)^{\phi^e} v_t$$

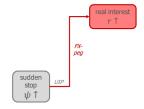
- lacktriangledown strict domestic inflation (or PPI) targeting: $\Pi_t^H=1$
- lacksquare exchange rate peg: $e_t/e_{t-1}=1$
- lacktriangledown strict inflation (CPI) targeting: $\Pi_t=1$

Fiscal policy:

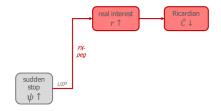
$$\dot{T}_t = \frac{\tau^D}{\lambda} \Upsilon_t
T_t^s = \tau^w w_t N_t$$

Calibration

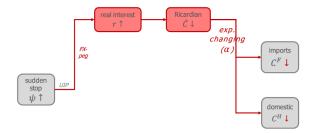
Parameters					
discount factor	β	0.99	HtM share	λ	0.3
risk aversion	σ	1	openness	α	0.5
inv. Frisch-elast.	φ	2	trade elast.	η	1.5
steady state NFA	ζ	0	trade elast.	γ	1.5
debt-elast. of prem	δ	0.1	monopolistic comp.	ε	6
dividend tax	$ au^D$	0	wage subsidy	$ au^{w}$	$1/\varepsilon$
Taylor-coeff.	ϕ^{π}	1.5	Calvo param	θ	0.9
Steady states					
markup	\mathcal{M}	1	output	Y	1
profit	Υ	0	foreign output	Y^*	1
REER	Q	1	real wages	W	1
HtM employment	Ň	1	HtM consumption	Č	1
Ricardian employment	Ñ	1	Ricardian consumption	Ĉ	1


TABLE: Parameters and selected steady state values

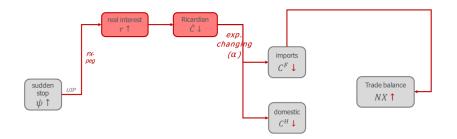
RESULTS


- 2 Model
 - SOE-TANH
 - Open economy New Keynesian Cross
- 3 Results
 - Sudden stops and the HtM channel
 - Sensitivity analysis
- 4 CONCLUSION

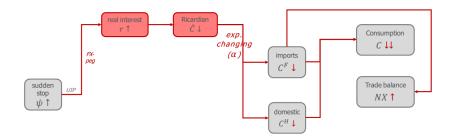
Transmission of a sudden stop — big picture



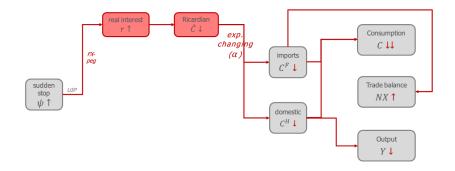
Gergő Motyovszki


Transmission of a sudden stop — big picture

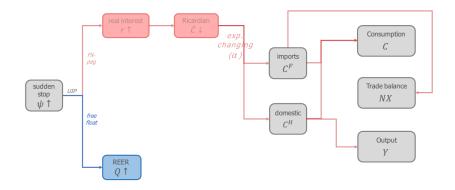
Transmission of a sudden stop — big picture



Transmission of a sudden stop — big picture

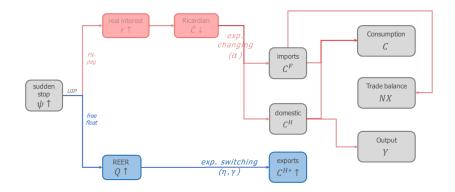

Gergő Motyovszki

Transmission of a sudden stop — big picture

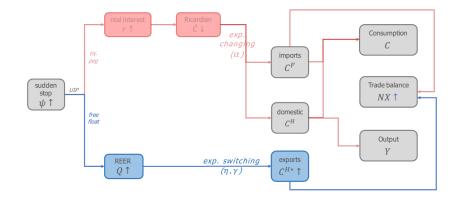


Gergő Motyovszki

Transmission of a sudden stop — big picture

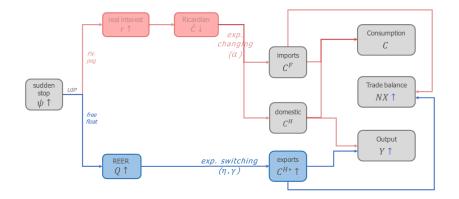


Transmission of a sudden stop — big picture

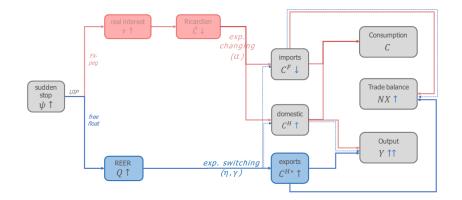


Gergő Motyovszki

Transmission of a sudden stop — big picture



Transmission of a sudden stop — big picture

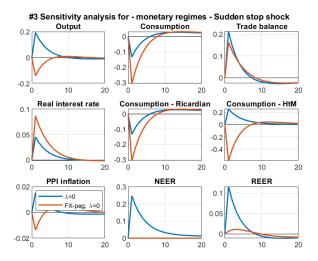


GERGŐ MOTYOVSZKI

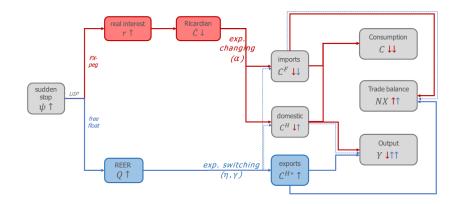
Transmission of a sudden stop — big picture

Transmission of a sudden stop — big picture

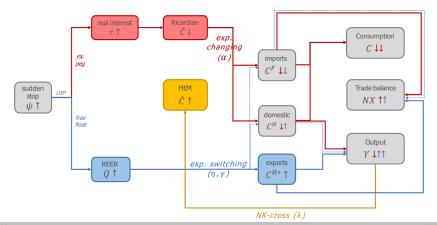
Gergő Motyovszki

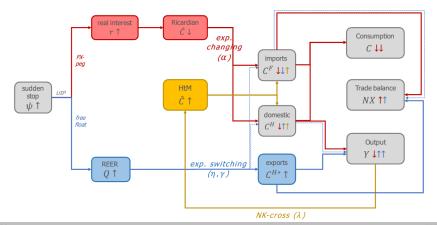

Transmission of a sudden stop — big picture

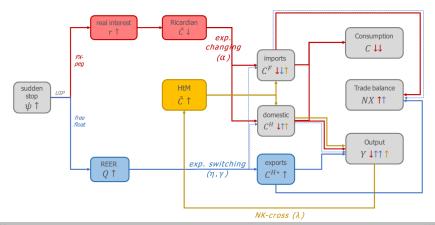
Gergő Motyovszki

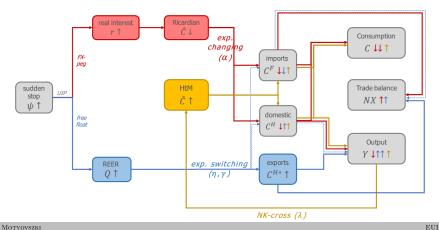

RESULTS

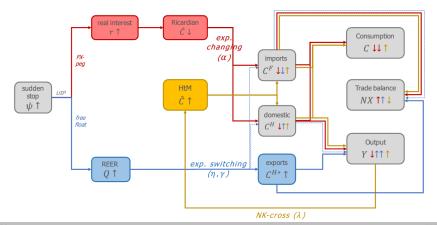
SUDDEN STOP IN RANK

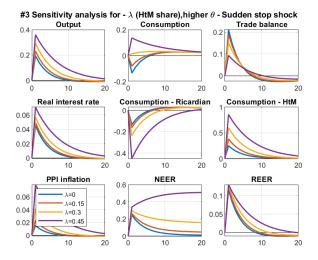



Transmission of a sudden stop – HtM Channel

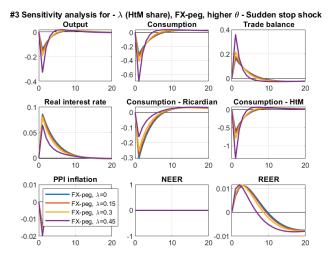

Transmission of a sudden stop – HtM Channel


Transmission of a sudden stop – HtM Channel

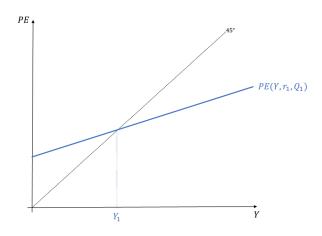

Transmission of a sudden stop – HtM Channel


Transmission of a sudden stop – HtM Channel

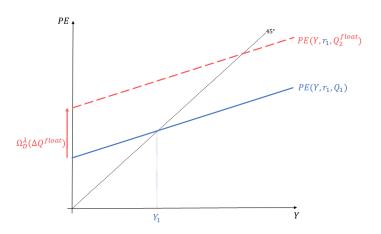
Transmission of a sudden stop – HtM Channel



SUDDEN STOP IN TANK – FLOATING EXCHANGE RATE

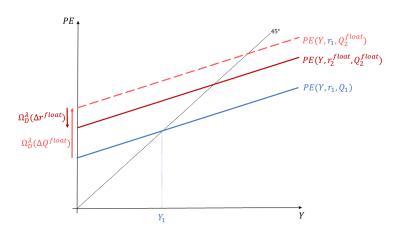


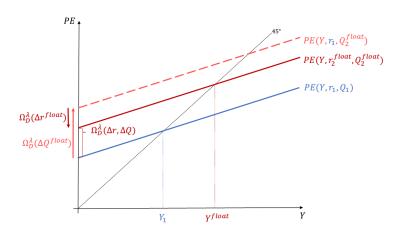
SUDDEN STOP IN TANK – FIXED EXCHANGE RATE



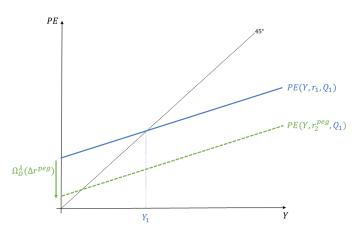
SUDDEN STOP IN THE NEW KEYNESIAN CROSS

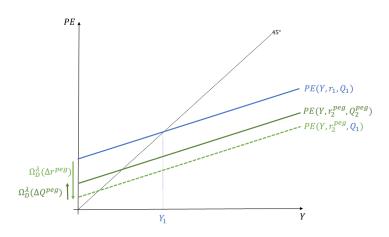
RESULTS 00000

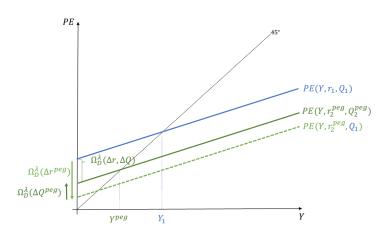

SUDDEN STOP IN THE NEW KEYNESIAN CROSS

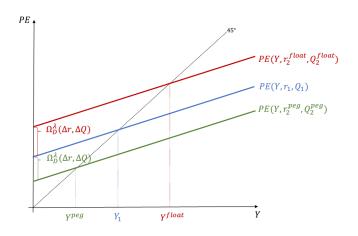

RESULTS 00000

SUDDEN STOPS AND THE HTM CHANNEL

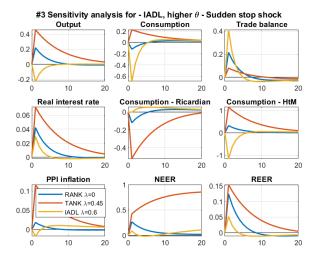

SUDDEN STOP IN THE NEW KEYNESIAN CROSS




SUDDEN STOP IN THE NEW KEYNESIAN CROSS



RESULTS 00000



RESULTS

Inverted Aggregate Demand Logic

- 1 Introduction
- 2 Model
 - SOE-TANK
 - Open economy New Keynesian Cross
- 3 Results
 - Sudden stops and the HtM channel
 - Sensitivity analysis
- 4 Conclusion

SUMMARY

- a sudden stop is contractionary under FX-peg, but expansionary under free float (in RANK as well as TANK)
- (2) the HtM-channel (in TANK) amplifies the responses of output under both currency regimes (relative to RANK)
- under free float the HtM-channel mitigates the fall in aggregate consumption (since incomes increase)
 - Ricardian and HtM consumption goes in opposite direction (instead of reinforcing, direct and indirect effects work against each other)
 - with high HtM share and nominal rigidities. HtM-channel can dominate the downward pressure from intertemporal substitution: aggregate consumption rises (only in TANK!)
- under FX-peg the HtM-channel amplifies the fall in aggregate consumption (since incomes also fall)
- ⇒ Accounting for the HtM-channel, a FX-peg is even more detrimental relative to a free float during BoP crises.

FUTURE PLANS

- empirical investigation
- analytical derivations for the Open Economy New Keynesian Cross
- monetary-fiscal interactions
 - Ricardian equivalence fails
 - redistribution and timing of taxes matter
 - active fiscal-passive monetary policy mix (emerging markets with weak institutions)
 - Fiscal Theory of the Price Level
- currency mismatch (FX-debt) in a more proper way?
- full-blown HANK??? (with idiosyncratic risk)

References I

Aghion, P., Bacchetta, P., and Banerjee, A. (2001). Currency crises and monetary policy in an economy with credit constraints. *European Economic Review*, 45(7):1121–1150.

Benczúr, P. and Kónya, I. (2015). Interest Premium, Sudden Stop, and Adjustment in a Small Open Economy. *Institute of Economics, Hungarian Academy of Sciences - Discussion Papers*, 2015(5).

Bilbiie, F. O. (2017). The New Keynesian Cross: Understanding Monetary Policy with Hand-to-Mouth Households. *CEPR Discussion Paper Series*, (DP11989).

Bilbiie, F. O. (2018). Heterogeneity and Determinacy: Amplification without Puzzles. CEPR Discussion Papers, (DP12601).

Boerma, J. (2014). Openness and the (inverted) aggregate demand logic. *DNB Working Paper*, (436).

Céspedes, L. F., Chang, R., and Velasco, A. (2004). Balance Sheets and Exchange Rate Policy. *American Economic Review*, 94(4):1183–1193.

←□ → ←□ → ← 글 → ← 글 □ ← 의 へ ○

References II

De Paoli, B. (2009). Monetary Policy under Alternative Asset Market Structures: the Case of a Small Open Economy. *Journal of Money, Credit and Banking*, 41(7):1301–1330.

Debortoli, D. and Galí, J. (2018). Monetary Policy with Heterogeneous Agents: Insights from TANK models. *mimeo, CREI and UPF.*

Galí, J. and Monacelli, T. (2005). Monetary Policy and Exchange Rate Volatility in a Small Open Economy. *Review of Economic Studies*, 72(3):707–734.

Iyer, T. (2017). Optimal Monetary Policy in an Open Emerging Market Economy. Federal Reserve Bank of Chicago Working Paper, (WP 2016-06).

Kaplan, G., Moll, B., and Violante, G. (2018). Monetary Policy According to HANK. *American Economic Review*, 108(3):697–743.

Krugman, P. (2014). Currency Regimes, Capital Flows, and Crises. *IMF Economic Review*, 62(4):470–493.

References III

Mendoza, E. G. (2002). Credit, Prices, and Crashes: Business Cycles with a Sudden Stop. In Edwards, S. and Frankel, J. A., editors, *Preventing Currency Crises in Emerging Markets*, pages 335–389. University of Chicago Press, Chicago.

Mendoza, E. G. (2010). Sudden Stops, financial crises, and leverage. *American Economic Review*, 100(5):1941–1966.

Schmitt-Grohé, S. and Uribe, M. (2003). Closing small open economy models. $Journal\ of\ International\ Economics,\ 61(1):163-185.$